

higher education & training

Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

T960(E)(A2)T

NATIONAL CERTIFICATE

MATHEMATICS N5

(16030175)

2 August 2017 (X-Paper) 09:00–12:00

This question paper consists of 5 pages and 1 formula sheet of 5 pages.

MATHSN5

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE
MATHEMATICS N5
TIME: 3 HOURS

MARKS: 190 92.

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Show ALL intermediate steps and simplify where possible.
- 5. ALL final answers must be rounded off to THREE decimal places.
- 6. Questions may be answered in any order, but subsections of questions must be kept together.
- 7. Use only BLUE or BLACK ink.
- 8. Write neatly and legibly.

2.5 Calculate $\frac{dy}{dx}$ if $y = (\sqrt{x})^x$ with the aid of logarithmic differentiation. (4)

2.6 Given the implicit function:

$$x^2 + xy + y^2 = 3$$

2.6.1 Determine:

$$\frac{dy}{dx} \tag{3}$$

2.6.2 Determine the equation of the tangent to the graph at the point (1,1). (3) [25]

QUESTION 3

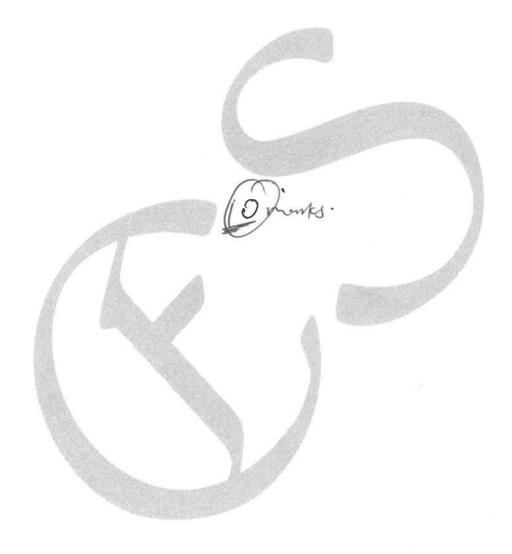
3.1 Given:

$$f(x) = x^3 - x - 1$$

- 3.1.1 Determine the coordinate of the point of inflection of f(x) (2)
- 3.1.2 Draw up a table of x and f(x), where x is ranging from x = -3 to x = 3. (2)
- Draw a neat graph of f(x) between these values showing the point of inflection on it. (3)
- Use the table and the graph to estimate a value for the best root between x = 1 and x = 2 of the equation $x^3 x 1$ and then use Taylor's/Newton's method to determine a better approximation of this root. (Root correct to THREE decimal figures.) (4)
- Two resistors with resistances R_1 and R_2 are connected in parallel, and the total resistance measured in ohms (Ω) is given by

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

If R_1 and R_2 are increasing at rates of 0,3 Ω /s and 0,2 Ω /s respectively, how fast is 1 changing when $R_1 = 80 \Omega$ and $R_2 = 100 \Omega$? (5)


QUESTION 6

Determine the general solution of (1-x)y dx = (y-1)xdy (3)

Calculate the particular solution of $\frac{d^2y}{dx^2} = -(x^2 - 1)^2$; if $\frac{dy}{dx} = 0$, x = 1 and y = 2 [8]

TOTAL: 100

100

